
Latency-Aware Scheduling for Real-Time Application Support
in Edge Computing

Kevin Röbert
Universität Hamburg
Hamburg, Germany

kevin.roebert@uni-hamburg.de

Heiko Bornholdt
Universität Hamburg
Hamburg, Germany

heiko.bornholdt@uni-hamburg.de

Mathias Fischer
Universität Hamburg
Hamburg, Germany

mathias.fischer@uni-hamburg.de

Janick Edinger
Universität Hamburg
Hamburg, Germany

janick.edinger@uni-hamburg.de

ABSTRACT
The relocation of computation from the network core to the edge
where data is primarily generated has gained momentum, leading
to the emergence of edge computing as a viable solution for low-
latency processing. As a result, edge computing has the potential
to significantly reduce response times, decrease bandwidth usage,
enhance energy efficiency, and offer various other benefits. At the
same time, end-user devices do not offer a consistent computing
platform and Internet middleboxes severely restrict communica-
tion with edge devices. Often, this is circumvented by publicly
accessible relay servers, which cause additional latency and ren-
der time-critical tasks unviable for offloading. This paper presents
an approach capable of addressing the complexities inherent in
edge computing and facilitating good decisions regarding latency-
aware computation offloading. We conducted several real-world
experiments to evaluate our approach and provide valuable data for
further research. Our findings show that edge offloading is compet-
itive to cloud and grid offloading, as it effectively reduces latency.
Empirical evidence from our research supports that edge computing
can offer significant advantages for real-time applications.

CCS CONCEPTS
• Networks→ Cloud computing; Network measurement.

KEYWORDS
Edge computing, Cloud computing, Networkmeasurement, Latency-
awareness
ACM Reference Format:
Kevin Röbert, Heiko Bornholdt, Mathias Fischer, and Janick Edinger. 2023.
Latency-Aware Scheduling for Real-Time Application Support in Edge Com-
puting. In 6th International Workshop on Edge Systems, Analytics and Net-
working (EdgeSys ’23), May 8, 2023, Rome, Italy. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3578354.3592866

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EdgeSys ’23, May 8, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0082-8/23/05. . . $15.00
https://doi.org/10.1145/3578354.3592866

1 INTRODUCTION
The increasing adoption of real-time applications, e.g., virtual and
augmented reality, artificial intelligence, speech recognition, or au-
tonomous vehicles, increases the demand for computing resources
in potentially resource-constrained environments. Hence, these are
perfect use cases for edge computing, but also impose strict require-
ments to computation offloading. With the advent of 5G technology,
edge devices are anticipated to become increasingly compelling
targets for offloading, owing to their potential to achieve latencies
as low as 1 ms. The method presented in this paper offers an optimal
means of exploiting such capabilities.

Based on subject tests [1], latencies of less than 150 ms are nec-
essary for real-time audio applications. To reach a point where
individuals cannot differentiate between actual speech and audio
material, latencies less than 50 ms must be attained. Visual applica-
tions have even stricter latency requirements. The human eye can
discriminate between 10–12 frames per second (FPS), perceiving
higher frame rates as motion. However, movies and animations
generally utilize at least 24 frames per second, which requires la-
tencies of at most 41 ms. Besides the standard requirements such as
speed and reliability, low latency and high throughput are becom-
ing increasingly important for this type of application, resulting
in significant challenges for traditional centralized cloud comput-
ing models. To overcome these challenges, edge computing has
emerged as a promising solution by providing computing resources
at the network edge to process data closer to the source. Edge of-
floading leverages computational resources and their proximity
within organizations, public entities, or individual residences to
provide real-time services while minimizing the latency. Despite
the benefits of edge offloading, several challenges still need to be
addressed, including edge devices’ heterogeneity, availability, and
reliability. In contrast to cloud and grid resources, end-user devices
are not standardized, not always available nor dependable. Fur-
thermore, middleboxes, e.g., firewalls and gateways doing network
address translations, severely restrict communication with end de-
vices. Consequently, a significant proportion of peers, up to 87% in
contemporary P2P networks [2], require additional measures, e.g.,
network address translator (NAT) traversal via relay servers, to be
reachable from the Internet. This measure usually increases the
latency in between peers, as relay servers are deployed in cloud en-
vironments and thus negate the benefits of edge computing. Thus,

https://doi.org/10.1145/3578354.3592866
https://doi.org/10.1145/3578354.3592866

EdgeSys ’23, May 8, 2023, Rome, Italy Kevin Röbert, Heiko Bornholdt, Mathias Fischer, and Janick Edinger

providing an abstraction layer capable of addressing the complex-
ities of including end-user devices in edge computing, allowing
to cope with restricted communication scenarios, and facilitating
decisions regarding computation offloading is essential.

In this paper, we provide a comprehensive analysis of edge of-
floading and its associated latency behavior. For that, we conducted
real-world experiments, whose results we describe in detail. In
particular, we focus on end-user devices, which are most often lo-
cated behind network barriers. Overcoming these barriers allows
to include valuable resources for computation offloading in close
vicinity and thus with low latency.We further empirically measured
how simple priority-based scheduling strategies can enhance the
service level of latency-sensitive applications in mixed (cloud/edge)
environments. The findings indicate that edge offloading can sig-
nificantly reduce latency in real-time applications compared to
traditional centralized cloud computing models. The insights and
findings presented in this paper can be used by researchers, practi-
tioners, and system designers as a valuable resource for developing
more realistic simulations that accurately reflect the performance
of edge offloading in real-world scenarios.

The remainder of this paper is structured as follows. Related
work is described in Section 2. Our system model for real-time edge
computing is shown in Section 3. Following a real-world evalua-
tion in Section 4 and a discussion of the results. Finally, Section 5
provides concluding remarks and future research directions.

2 RELATEDWORK
Edge offloading has gained significant attention in research as an
alternative to cloud offloading, which enables cloud computing
capabilities at the edge of a network [3]. This approach allows
for data locality, reduced bandwidth, and lower latencies. In their
study, Corneo et al. [4] investigate the structure of in-network edge
computing implementation and evaluate the potential reductions
in latency that computational resources could offer to end-users in
comparison to the pre-existing cloud infrastructure that has been de-
ployed. In contrast to prior research, our study analyzes the effects
on latency that arise from utilizing end-user devices at the edge of
the network instead of relying on cloud resources. A formal study of
edge service entity placement for VR applications was presented by
Wang et al. in [5] together with combinatorial optimization show-
ing its NP-hardness. For optimal, centralized solution for multi-user
computation offloading in edge environments, Chen et al. [6] also
showed its NP-hardness and presented a game theoretic approach.
Scocal et al. [7] schedule tasks on edge, CDN, and cloud resources
and evaluate their performance for latency-sensitive applications.
However, the experiments were only simulated and not performed
in a real environment. Mohan et al. [8] conducted client-to-cloud
latency measurements by using RIPE Atlas. Nonetheless, the la-
tency up to the local network of the edge devices was not taken
into account. In [9], the performance of edge devices is analyzed in
a real-world experiment. However, this work does not provide in-
sight into latency behavior nor usability for real-time applications.
Schäfer et al. [10] introduced the Tasklet middleware for computa-
tion offloading, which facilitates the distribution of computations
to remote devices. In particular, the system envisions sharing idle

resources from individuals or institutions. However, Tasklet lacks
real-time capabilities.

Prior works frequently exhibit limited consideration of the actual
conditions present at the edge with the users, thereby falling short
in their representation of the same. Therefore, we provide a com-
prehensive analysis of edge offloading and its associated latency
behavior through real-world experiments.

3 REAL-TIME EDGE COMPUTING
This section first presents the used middleware and then the strate-
gies to make the edge real-time capable. For that, we describe meth-
ods to overcome various communication barriers such as firewalls,
NATs, and internet gateway devices (IGDs), which make establish-
ing connections with edge resources complex or time-intensive.
Finally, we introduce priority-based scheduling strategies to im-
prove latency-sensitive applications’ service levels in mixed envi-
ronments.

3.1 Middleware

Broker

Broker

Broker

P/CCP/C
P/C

P

P/C
P/C

P/C

C
P

P

P/C

C

P/C

P/C
P/C

P/C

P

P/C

P
Resource
Provider

Resource
Consumer C

Resource Provider
and Consumer P/C

Tasklet
TVM

Figure 1: The Tasklet system architecture [10]: A hybrid ap-
proach to resource allocation, utilizing providers (P) to share
idle capacities with consumers (C), broker-facilitated (B) re-
source management and matchmaking, and Tasklet-based
workload distribution executed on virtual machines (TVM).

Our architectural design leverages the Tasklet middleware [10],
that allows to distribute computations to remote devices. The sys-
tem architecture is organized in a hybrid system, as depicted in
Figure 1, comprised of three core components: providers, consumers,
and brokers. The providers enable consumers to leverage their un-
used resources. Some devices might be provider and consumer at
the same time. The brokers serve as resource managers, facilitating
the matchmaking between providers and consumers. To effectively
distribute computing tasks, consumers offload their workload in
the form of Tasklets, which are self-contained units of computa-
tion at the granularity of function calls. These Tasklets typically
have an execution time that ranges from hundreds of milliseconds
to several minutes. The Tasklet middleware is executed on both
the consumers’ and providers’ devices to provide transparent com-
munication for application developers. The execution of Tasklets
occurs on process-level virtual machines, known as Tasklet Virtual
Machines (TVMs), which offer secure and isolated runtime environ-
ments while abstracting away from the underlying heterogeneous

Latency-Aware Scheduling for Real-Time Application Support in Edge Computing EdgeSys ’23, May 8, 2023, Rome, Italy

hardware-software configurations of the devices. The Tasklet sys-
tem is capable to deal with varying levels of reliability, availability,
and performance of the resource providers. To ensure execution
guarantees, the system introduces the quality of computation (QoC)
concept, which is based on context-aware scheduling [11]. This
QoC modifier becomes particularly important for applications that
require a reliable or timely execution instead of a best-effort com-
puting approach. Furthermore, the Tasklet system mechanisms
enable the extension of serverless computing models, such as the
Function-as-a-Service (FaaS) programming model, to edge systems.
As a result, this framework represents an advancement in the de-
velopment of edge computing architectures.

Forward
Result (8)

Submit
Task (1)

Return Result (7)

Offload Task (5)

:Consumer :Provider :Broker

Resource Request (2)
Assign

Resource (3)
Resource Response (4)

Execute (6)

Figure 2: Tasklet life cycle.

The life cycle of a Tasklet is illustrated in Figure 2, and it com-
prises the following steps: (1) The application identifies a need
for additional computing power and submits a Tasklet to the lo-
cal running Tasklet middleware. (2) The middleware then sends a
resource request to the broker. (3) The broker evaluates the avail-
able providers and selects the most appropriate one to fulfill the
request. (4) The broker returns the address of the selected provider
to the consumer. (5) The consumer then forwards the Tasklet di-
rectly to the selected provider. (6) The provider executes the Tasklet
on one of its Tasklet Virtual Machines (TVMs). Once the Tasklet
is executed, the provider (7) returns the execution result to the
consumer. (8) The local middleware then relays the result to the
application. This process enables efficient utilization of edge com-
puting resources, and it helps to meet the resource demands of
applications in a timely and effective manner.

3.2 NAT Traversal
To facilitate edge computation offloading, low-latency communica-
tion among providers, consumers, and brokers is essential. Ideally,
the network structure should adhere to the Tasklet system archi-
tecture depicted in Figure 1, where providers and consumers can
register with their preferred brokers and exchange Tasklets and
results. However, the practical implementation of this ideal network
structure is not always feasible on the Internet due to several factors:
First, it requires each host to be equipped with a publicly routable
Internet Protocol (IP) address and to be able to communicate bi-
directionally with other hosts. However, the Internet comprises
several independent, autonomous systems, often divided by com-
munication barriers such as firewalls, NATs, and IGDs, making it
difficult or impossible to establish connections with some hosts.
As a result, certain hosts can only establish connections to others
but cannot be reached via connections initiated by others. This

unilateral restriction predominantly affects mobile, residential, or
corporate networks, which renders the devices within these net-
works unreachable. Incorporating these barriers into the Tasklet
system architecture implies that brokers must operate on public
hosts that are reachable to all. In contrast, providers and consumers
in edge environments may be able to register with these brokers
but unable to exchange Tasklets or results.

The challenge of inaccessible edge devices is frequently ad-
dressed through relay servers. However, this solution introduces
additional communication hops, resulting in higher latency. Addi-
tionally, deploying relay servers in cloud environments undermines
the advantages offered by edge computing and can render compu-
tation offloading unviable. Therefore, we constructed an overlay
that matches the ideal network structure (see Figure 3) required for
low-latency offloading. To build this overlay, our approach uses the
middlebox traversal technique presented by Bornholdt et al. [12]
to render previously unreachable hosts reachable. In contrast to
traditional middlebox traversal techniques such as Interactive Con-
nectivity Establishment (ICE) [13], this traversal approach enables
the secure establishment of direct connections with the lowest possi-
ble number of messages. This is achieved by performing handshake
optimizations allowing to save 1–2 round-trip times (RTTs).

The mechanism of middlebox traversal involves initiating a con-
nection by two devices to a known rendezvous server, which subse-
quently facilitates the exchange of network endpoint information
between the devices. Using this information, the devices can es-
tablish direct communication via a temporary opening in their
respective middlebox firewalls. This opening enables incoming traf-
fic from the other device, eliminating the need for a third-party
intermediary to relay communications between the two devices.
However, despite the handshake optimizations, there are still 1–2
RTTs required to establish direct connections. Moreover, such a
delay may exceed the acceptable limit in some real-time applica-
tions. Therefore, supplementary methods are needed to proactively
establish connections to potential offloading targets. Thus, our ap-
proach proactively creates an overlay network structure allowing
all providers, consumers, and brokers to reach each other. Once
the overlay is established, the Tasklet system can offload as usual
without additional communication overhead.

C

P

Broker

C

P

Figure 3: Without an overlay, only the broker can be con-
tacted (solid arrows). Dashed arrows symbolize using an
overlay-enabled communication protocol that aligns with
the ideal network configuration. For example, consumers
(C) can contact providers (P) and vice versa. The directional
arrows denote the ability of each actor to initiate communi-
cation within the system.

EdgeSys ’23, May 8, 2023, Rome, Italy Kevin Röbert, Heiko Bornholdt, Mathias Fischer, and Janick Edinger

3.3 Priority-based Scheduling
An offloading system typically encompasses diverse tasks with
varying complexities and priorities, ranging from short to long-term
and time-critical to non-time-critical tasks. Accordingly, suboptimal
scheduling can result in non-time-critical tasks obstructing the
system, leading to delays in the execution of time-critical tasks
or missing a deadline. Consequently, deploying a priority-based
scheduler to mitigate these circumstances is essential. We describe
the fundamentals of our scheduler in the following.

3.3.1 Task Priorities: Tasks are classified into two distinct cate-
gories: low-priority and real-time tasks. Low-priority tasks are not
time-sensitive and can tolerate execution times of several seconds,
however, blocking system resources during their execution. In con-
trast, real-time tasks have brief execution periods and stringent
deadlines that must be met.

3.3.2 Resource Types: Moreover, an offloading system may distrib-
ute resources across different locations, varying from geograph-
ically nearby to distant ones, leading to variance in latency. Re-
sources connected to the same router are considered the nearest
available resources. We refer to edge resources if a resource is lo-
cated behind an external router, such as residential or corporate
resources. If a resource is in local topological proximity, it becomes
a favorable offloading target.

3.3.3 Task Scheduling: Our schedulingmechanism utilizes a priority-
based approach that applies individual scheduling algorithms based
on the priority level of the task and latency in between consumers
and providers. Tasks with higher priorities are delegated to the
nearest available provider to minimize latency.

4 EVALUATION
This section presents our evaluation including the scheduling strate-
gies and the overall setup. This allows us to empirically measure
how simple priority-based scheduling strategies can enhance the
service level of latency-sensitive applications in mixed (cloud/edge)
environments. We implemented a real-time-capable prototype on
top of the Tasklet middleware to conduct the experiment. Addi-
tionally, we added different scheduling strategies per priority class
utilizing varying device types within the local network, edge, and
cloud. To gather realistic data, we performed edge offloading in
real-world experiments. Lastly, we discuss our findings and pro-
vide open access to our data 1 as a valuable reference for further
investigations.

4.1 Scenarios
We evaluate five different scenarios that are summarized in Table 1,
providing a comprehensive evaluation of the approach under vary-
ing conditions. Per scenario, we captured the timings of the whole
Tasklet lifecycle (see Figure 2).

S1 Mixed Random: In this scenario, real-time as well as low-
priority tasks are assigned randomly to any available re-
source. Additionally, all direct communications have been
forcefully suppressed, resulting in the need for communica-
tion to be relayed. Therefore, this scenario represents the

1https://github.com/KevinRoebert/Latency-Aware-Edge-Computing

most unfavorable environment for real-time offloading and
acts primarily as a baseline for our experiments.

S2 Mixed Relayed: This scenario prefers local over remote re-
sources for real-time tasks. Initially, an effort is made to
allocate resources within the local network. If this fails, an
edge resource is considered, and when this fails, resources
in the cloud are utilized. Whereas low-priority tasks are as-
signed randomly. All communications with local and edge
resources are forced to use the relay.

S3 Mixed Direct: This scenario is similar to S2 even though
that only the communication to the edge resources must be
relayed.

S4 Separated Relayed: Within this scenario, real-time tasks are
scheduled as in S2. Low-priority tasks are only assigned to
cloud resources to prevent them from allocating resources
with low latencies. The Relay usage is the same as for sce-
nario S3.

S5 Separated Direct: In the last scenario, the scheduling of both
task types is equal to the one in S4. Additionally, direct com-
munications to all resource types are enabled. This approach
has the potential to demonstrate a plausible reduction in
latency through the utilization of direct communication.

Table 1: Scheduling strategies for real-time and low-priority
tasks in different environments.𝑑 denotes direct connections,
whereby 𝑟 denotes relayed connections.

Scheduling per Priority Class
High/Realtime Low

S1 random random
S2 local𝑟 < edge𝑟 < cloud𝑑 random
S3 local𝑑 < edge𝑟 < cloud𝑑 random
S4 local𝑑 < edge𝑟 < cloud𝑑 cloud𝑑
S5 local𝑑 < edge𝑑 < cloud𝑑 cloud𝑑

4.2 Setup
Our experimental setup consists of a total of 31 providers, 31 con-
sumers, one broker, and one relay server. Four of these are local
providers, which are located in the same (local) network as the
consumers. These providers represent unused resources within an
organizational unit, such as a colleague’s computer. The consumer,
the broker, and the local providers were located at the University
of Hamburg and shared the same router. Each of the devices was
connected using a 2 Gigabit Ethernet with an 801.2ad bonding.
Fourteen edge devices were distributed in pairs of two across seven
different residential homes in Hamburg, Germany. Since we are
only interested in the end-to-end network transmission times, we
deliberately refrain from naming the hardware specs such as CPU
model and RAM. Each edge device was equipped with a 1 Gigabit
Ethernet network interface. The cloud resources have been divided
into three separate distance classes. In the first class, four cloud
resources are located in proximity in Düsseldorf, Germany. The sec-
ond class consists of eight geographically distant cloud resources
situated in Hillsboro, USA. Despite this distance, they are connected
by a good peering. Finally, the third class includes a single cloud
resource located in Seoul, South Korea, which has considerably

https://github.com/KevinRoebert/Latency-Aware-Edge-Computing

Latency-Aware Scheduling for Real-Time Application Support in Edge Computing EdgeSys ’23, May 8, 2023, Rome, Italy

Figure 4: Bar charts showing the (rounded) proportion of tasks across different environments.

Low-Priority Real-Time
Task Type

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge

39.45 41.14

46.48 48.1

14.06 10.76

Cloud Edge Local

(a) S1

Low-Priority Real-Time
Task Type

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge

36.05
44.44

48.93
44.44

15.02 11.11

Cloud Edge Local

(b) S2

Low-Priority Real-Time
Task Type

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge

38.22 43.22

47.88 44.07

13.9 12.71

Cloud Edge Local

(c) S3

Low-Priority Real-Time
Task Type

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge

100.0

5.56

76.94

17.5

Cloud Edge Local

(d) S4

Low-Priority Real-Time
Task Type

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge

100.0

9.44

74.72

15.83

Cloud Edge Local

(e) S5

Low-Priority Real-Time
Task Type

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge

39.45 41.14

46.48 48.1

14.06 10.76

Cloud Edge Local

poor peering/latency. The relay server was deployed at a cloud
server located in Baden-Baden, Germany.

4.3 Results
First, the matchmaking outcomes for our scheduler in the five
distinct situations are examined. Subsequently, an in-depth analysis
of the network time characteristics exhibited by each resource type
during the experimental trials is presented. Finally, we summarize
our results and derive conclusions.

In the baseline scenario S1, the allocation of low-priority and real-
time tasks among all available resources was random. Consequently,
an equal proportional distributionwith respect to the resource types
was observed in Figure 4a. The Figure 4a shows the proportion of
tasks across the environments: cloud, edge, and local. Particularly
for time-critical tasks, unfavorable scheduling is already apparent
here. 41.14% of the critical tasks were scheduled to possibly slow
cloud resources. Less critical tasks occupy valuable low-latency
resources such as local and edge environments. As a result, only a
smaller proportion of these resources is available for time-critical
tasks, so they also have to switch to the cloud environment, which
may be in an unfavorable location and thus increase the overall
latency.

Due to the fact that the tasks are arbitrarily submitted to the
system, the locality-aware scheduling strategy for the time-critical
tasks remains mostly the same in S2 & S3 (see Figure 4b and 4c). It
is thus noticeable that a scheduler must not only distribute the time-
critical tasks according to the resource latencies but also ensure
that the non-critical tasks do not occupy the low-latency resources.

For the scheduling strategy in scenario S4 & S5, it can be seen in
Figure 4d and Figure 4e that significantly fewer time-critical tasks
reach the cloud environment. Such a strict reservation of local and
edge resources for time-critical tasks is not realistic. However, a
strict separation into cloud, edge, and local could be replaced in fa-
vor of a continuous measurement of latencies and a corresponding
classification. This would allow poorly connected edge resources
to be valuable targets for non-critical tasks. As a result, resources
would be used more effectively in the overall system. It should be

Table 2: Network times of the three cloud environments in
ms.

Loc. Mean Std. Min 25% 75% Max
cloud DEU 39.33 19.34 28.0 31.0 39.0 120.0
cloud USA 201.65 28.54 186.0 191.25 199.25 320.0
cloud KOR 351.66 58.32 317.0 318.0 369.0 419.0

noted that the latencies depend on the combination of communi-
cation partners. Accordingly, such a strategy would be helpful for
recurrent tasks since the scheduler can try to predict submission in
this case.

In the following, the network times describe the sum of all trans-
mission times when offloading a task. This includes requesting a
suitable resource from the broker, the subsequent offloading to the
provider, and the respective responses.

Table 2 highlights the weaknesses of cloud-only solutions that
do not take appropriate measures to mitigate latency. Depending on
the location of the cloud services, there are significant differences in
network times, even though they typically have strong connectivity.
A geographically close cloud would allow 22 FPS with an assumed
execution time of 5 ms. This is already below the threshold of
24 FPS for typical video applications. Only 2 FPS (KOR) to 4 FPS
(USA) are possible when the cloud is even further away. Thus, our
experiment’s mean network time for the cloud environments is
148.93 ms or 6 FPS as shown in Figure 5. Accordingly, bringing
the cloud resources closer to the respective end users would be
necessary. This can be difficult for several reasons. Setting up new
cloud sites are expensive and not always economical. The existing
resources at the edge offer an alternative.

During the experiment, we distinguished between two types of
edge resources. In scenarios S1 to S4, these were exclusively accessi-
ble via a relay. In scenario S5, direct connections were used. Table 3
shows the significant difference between the common methods us-
ing a relay and our direct connections. Whereas relayed resources
require on average 62.60 ms, the time is almost divided by half to

EdgeSys ’23, May 8, 2023, Rome, Italy Kevin Röbert, Heiko Bornholdt, Mathias Fischer, and Janick Edinger

Table 3: Network times of the local and edge environments in
ms. 𝑑 denotes direct connections, whereby 𝑟 denotes relayed
connections.

Mean Std. Min 25% 75% Max
local𝑟 66.49 21.61 50.0 57.75 68.0 183.0
local𝑑 1.54 1.95 0.0 0.0 2.0 8.0
edge𝑟 62.60 20.90 42.0 53.0 65.0 178.0
edge𝑑 34.33 12.99 21.0 27.0 36.0 130.0

34.33 ms by direct connections. This behavior is to be expected, as
the relay adds additional hops. If we assume again an execution
time of 5 ms, this results in 14 FPS for relayed edge resources and
25 FPS for direct resources. In contrast to the tested cloud resources,
this allows us to run real-time applications with high requirements,
such as virtual reality, at the edge. Furthermore, we observed that
our edge resources have less standard deviation than the closest
cloud resources. This is a promising indicator that edge resource
latencies can be predicted.

Figure 5: Network times of cloud and edge resources, while
both using direct connections.

The importance of a discovery mechanism that can detect the
resources available in its network is shown in Table 3. If a system
cannot detect that two nodes are located within the same network,
this can lead to an increase in delay of 43 times on average. However,
this can usually be easily avoided by using NAT loopback support
or sending additional local addresses for connection setup attempts.

With the help of the measurements provided, more realistic sim-
ulations can be performed based on various input parameters of
a scheduler. For example, it can be shown how a system behaves
with respect to missed deadlines under different scheduling strate-
gies. This allows optimization for the respective use case and the
design of an adapted scheduler. The present study can provide sev-
eral insights for future schedulers, including but not limited to the
following: (I) For effective scheduling, it is recommended that the
scheduler allocates nearby resources to tasks with strict and short
deadlines while also ensuring the availability of a certain contin-
gent of resources for such tasks. (II) Geographically proximate edge
resources can compete with cloud resources and be a worthwhile
target for real-time computations. (III) The variance for latency in
edge environments can be comparably low or lower than that of
geographically proximate cloud environments. Thus, they may be
predictable.

5 CONCLUSION
This paper presents a computation offloading system that can utilize
edge resources within organizations, public entities, or individual
residences to provide real-time services while minimizing latency.
We achieved this by abstracting from the heterogeneity of devices
at the edge by integrating the Tasklet system and extending it with
proactive middlebox traversal techniques resulting in an ideal over-
lay network with direct connections instead of communication via
relays. We provided an implementation showing the feasibility of
our approach and conducted empirical experiments. Our results
suggest that in contrast to traditional centralized cloud computing
models, edge offloading has the potential to decrease latency ef-
fectively in real-time applications. Furthermore, the outcomes and
insights presented in this paper can serve as a valuable reference
for researchers, practitioners, and system designers in develop-
ing more authentic simulations that more accurately replicate the
performance of edge offloading in real-world situations.

In the future, we also plan to use the collected data as a simu-
lation baseline for optimized scheduling algorithms for real-time
and time-critical applications. Furthermore, we want to investigate
to what extent we can reduce the latency even further by applying
decentralized scheduling strategies and thus avoiding communi-
cation with a broker. Moreover, we want to investigate whether
pipelining can reduce latencies, especially in the context of data
streams.

REFERENCES
[1] International Telecommunication Union. 2003. ITU-T Recommendation G. 114-

One-way transmission time. https://www.itu.int/rec/T-REC-G.114-200305-I.
[2] Sebastian Henningsen, Martin Florian, Sebastian Rust, and Björn Scheuer-

mann. 2020. Mapping the interplanetary filesystem. In IEEE IFIP Networking
Conference.

[3] Mahadev Satyanarayanan. 2017. The emergence of edge computing. Computer,
50, 1.

[4] Lorenzo Corneo, Nitinder Mohan, Aleksandr Zavodovski, Walter Wong, Chris-
tian Rohner, Per Gunningberg, and Jussi Kangasharju. 2021. (how much) can
edge computing change network latency? In IEEE IFIP Networking Conference.

[5] Lin Wang, Lei Jiao, Ting He, Jun Li, and Max Mühlhäuser. 2018. Service entity
placement for social virtual reality applications in edge computing. In IEEE
Conference on Computer Communications.

[6] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. 2015. Efficient multi-user
computation offloading for mobile-edge cloud computing. IEEE/ACM transac-
tions on networking, 24, 5.

[7] Vincenzo Scoca, Atakan Aral, Ivona Brandic, Rocco De Nicola, and Rafael
Brundo Uriarte. 2018. Scheduling latency-sensitive applications in edge com-
puting. In 8th International Conference on Cloud Computing and Services Science.

[8] Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Suzan Bayhan, Wal-
ter Wong, and Jussi Kangasharju. 2020. Pruning edge research with latency
shears. In Proceedings of the 19th ACM Workshop on Hot Topics in Networks.

[9] Heiko Bornholdt, Kevin Röbert, Martin Breitbach, Mathias Fischer, and Janick
Edinger. 2023. Measuring the edge: a performance evaluation of edge offloading.
In IEEE International Conference on Pervasive Computing and Communications
Workshops and other Affiliated Events.

[10] Dominik Schäfer, Janick Edinger, Justin Mazzola Paluska, Sebastian VanSyckel,
and Christian Becker. 2016. Tasklets: "better than best-effort" computing. In
IEEE International Conference on Computer Communication and Networks.

[11] Dominik Schäfer, Janick Edinger, Sebastian VanSyckel, Justin Mazzola Paluska,
and Christian Becker. 2016. Tasklets: overcoming heterogeneity in distributed
computing systems. In IEEE International Conference on Distributed Computing
Systems Workshops.

[12] Heiko Bornholdt, Kevin Röbert, and Mathias Fischer. 2023. Low-latency tls
1.3-aware hole punching. In IEEE International Conference on Communications.
(in press).

[13] A. Keranen, C. Holmberg, and J. Rosenberg. 2018. Interactive Connectivity Es-
tablishment (ICE): A Protocol for Network Address Translator (NAT) Traversal.
RFC 8445.

https://www.itu.int/rec/T-REC-G.114-200305-I

	Abstract
	1 Introduction
	2 Related Work
	3 Real-time Edge Computing
	3.1 Middleware
	3.2 NAT Traversal
	3.3 Priority-based Scheduling

	4 Evaluation
	4.1 Scenarios
	4.2 Setup
	4.3 Results

	5 Conclusion

